H(1)	0.021 (8)	1/4	-0.470(7)	0.066 (9)
H(2)	0.215 (5)	0.375 (4)	-0.286 (4)	0.077(7)
H(4)	0.135 (8)	1/4	-0.810(7)	0.054 (8)
H(5)	0.398 (8)	1/4	-0.810(7)	0.065 (10)
H(6)	0.619(7)	1/4	-0.304 (8)	0.066(11)

Table 2. Selected geometric parameters (Å, °)

C(1)C(2) C(1)H(1) C(1)H(2) C(2)N	1.473 (5) 0.96 (4) 1.02 (3) 1.287 (4)	C(2)—O N—H(4) N—H(5) O—H(6)	1.297 (4) 0.92 (4) 0.86 (5) 0.80 (5)
$\begin{array}{c} Cl \cdot \cdot \cdot H(4^{\prime}) & 2.29 \ (4^{\prime}) \\ Cl \cdot \cdot \cdot H(5^{\prime\prime}) & 2.39 \ (4^{\prime\prime}) \end{array}$	4) 5)	Cl···H(6)	2.09 (5)
C(1)C(2)N C(1)C(2)O	122.6 (3) 120.8 (3)	NC(2)O	116.6 (3)
$\begin{array}{l} H(4^{i}) \cdots Cl \cdots H(5^{ii}) \\ H(4^{i}) \cdots Cl \cdots H(6) \\ H(5^{ii}) \cdots Cl \cdots H(6) \end{array}$	134.1 (14) 118.0 (15) 108.0 (15)	$\begin{array}{c} Cl^{\text{III}} \cdots H(4) - N \\ Cl^{\text{IV}} \cdots H(5) - N \\ Cl \cdots H(6) - O \end{array}$	174 (3) 171 (4) 177 (4)
Symmetry codes: (i) $1 + x$, y , $1 + z$; (ii) x , y , $1 + z$; (iii) $x - 1$, y , $z - 1$; (iv) x , y , $z - 1$.			

Computations were carried out on a MicroVAX 3600 computer with the NRC package (Gabe, Lee & Le Page, 1985). Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: NRC. Program(s) used to solve structure: MULTAN11/82 (Main et al., 1982). Program(s) used to refine structure: NRC. Molecular graphics: ORTEP (Johnson, 1976). Software used to prepare material for publication: NRC.

The authors are grateful to the National Science Council of Taiwan, ROC, and Academia Sinica for partial financial support. Thanks are due to Ms S.-C. Chou for assistance in the X-ray intensity data collection.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: AS1105). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Lee, F. L. & Le Page, Y. (1985). Crystallograhic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 167–174. Oxford: Clarendon Press.
- Gubin, A. I., Buranbaev, M. Zh. & Nurakhmetov, N. N. (1988). Kristallografiya, 33, 506-508.
- Gubin, A. I., Yanovskii, A. I., Struchkov, Yu. T., Beremzhanov, B. A., Nurakhmetov, N. N. & Buranbaev, M. Zh. (1980). Cryst. Struct. Commun. 9, 745–748.
- Gubin, A. I., Yanovskii, A. I., Struchkov, Yu. T., Nurakhmetov, N. N., Buranbaev, M. Zh. & Beremzhanov, B. A. (1986). *Izv. Akad. Nauk Kaz. SSR Ser. Khim.* pp. 78–81.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 1335-1337

2,3,4,5,6-Penta-*O*-acetyl-D-galactonic Acid 1'-Phenyl-2'-ethoxycarbonylvinyl Ester

JÜRGEN KOPF AND DIRK ABELN

Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

PETER KÖLL

Fachbereich Chemie, Organische Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany

ROLAND MEISEL AND KLAUS PESEKE

Fachbereich Chemie, Universität Rostock, Buchbinderstrasse 9, D-18051 Rostock, Germany

(Received 8 November 1993; accepted 27 January 1994)

Abstract

In the galactonic acid part of the title compound, $C_{27}H_{32}O_{14}$, two C—O bonds are aligned 1,3-parallel with an O···O distance of 2.884 (2) Å. The absolute structure, determined crystallographically, corresponds to the known chirality of the title compound.

Comment

The title compound (I) was synthesized by reacting penta-O-acetyl-D-galactonyl chloride with ethyl benzovlacetate in the presence of a base in an aprotic solvent (Meisel, 1991). In order to characterize the resulting reaction product unambiguously, an X-ray structure determination was undertaken. Suitable single crystals, melting at 403-405 K, were obtained from ethanol. The positions of all H atoms were refined with distance restraints for the C-H distances (Sheldrick, 1993). All other distances and angles are generally as expected. Friedel opposites were collected after each reflection. These Friedel pairs are regarded as symmetry independent and were not merged. Since the title compound crystallizes in a polar space group, polar axis restraints were applied by the method of Flack & Schwarzenbach (1988).

Acta Crystallographica Section C ISSN 0108-2701 ©1994

Only recently it has been realized that acetylated open-chain carbohydrates show a high tendency towards aligning primary acetoxy groups 1,3-parallel to one another (Köll *et al.*, 1993). The 1,3-parallel interactions between the heavy atoms O and C are usually designated as O//O and C//O. The O//O interaction between O4 and O6 in the title compound could easily have been avoided by a rotation of 120° around the C5—C6 bond resulting in a conformation that is free of such an interaction. The angle between the C4—O4 and C6—O6 vectors is $-12.5 (1)^{\circ}$.

Besides the title compound, other reported cases are: xylitol pentaacetate (Park, Park & Shin, 1990), the hexaacetates of D-glucitol (Park *et al.*, 1990; Kopf, Topf, Morf, Zimmer & Köll, 1991), D,L-glucitol and galactitol (Kopf, Morf, Zimmer, Bischoff & Köll, 1992). Two acetylated derivatives of mannitol have also been described, in which such an interaction is also observed (Galan *et al.*, 1988).

Experimental

Crystal data	
$C_{27}H_{32}O_{14}$ $M_r = 580.53$ Monoclinic $P2_1$ a = 11.775 (1) Å b = 7.763 (1) Å c = 16.283 (1) Å $\beta = 93.79 (1)^\circ$ $V = 1485.2 (2) Å^3$ Z = 2 $D_x = 1.298 \text{ Mg m}^{-3}$	Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 25 reflections $\theta = 41.4-53.0^{\circ}$ $\mu = 0.903$ mm ⁻¹ T = 293 (1) K Transparent blocks $0.5 \times 0.4 \times 0.3$ mm Colourless
Data collection	
Enraf–Nonius CAD-4	$R_{\rm int}=0.0279$
diffractometer	$\theta_{\rm max} = 76.5^{\circ}$

$2\theta/\omega$ scans
Absorption correction:
none
7117 measured reflections

6233 independent reflections 5921 observed reflections $[I > 2\sigma(I)]$

Refinement

C6 C21 C22

C31 C32

C41 C42 C51 C52 C61 C62 **O**1*a* 01*c* O3a C1a C2a C3a Clb C2bC3b C4b C5bC6b C1c

C2c

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.0412$	SHELXL (Sheldrick, 1994)
$wR(F^2) = 0.1124$	Extinction coefficient:
S = 1.042	0.004 (0)
6233 reflections	Atomic scattering factors
409 parameters	from International Tables
Calculated weights	for Crystallography (1992,
$w = 1/[\sigma^2(F_o^2) + (0.0779P)^2$	Vol. C, Tables 4.2.6.8 and
+ 0.1346P]	6.1.1.4)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute configuration:
$(\Delta/\sigma)_{\rm max} = 0.430$	Flack parameter =
$\Delta \rho_{\rm max} = 0.201 \ {\rm e} \ {\rm \AA}^{-3}$	-0.07(13) (Flack, 1983)
$\Lambda_{0} = 0.201 \text{ a} ^{3}$	

 $h = 0 \rightarrow 14$

 $l = -20 \rightarrow 20$

3 standard reflections

frequency: 120 min

intensity variation: 1%

 $k = 0 \rightarrow 9$

Table 1. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

		- ,	
x	у	Z	U_{eq}
0.6184 (2)	0.1119 (2)	0.3827(1)	0.0720 (5)
0.6965(1)	0.5128 (2)	0.2972(1)	0.0435 (2)
0.5401 (1)	0.3144 (2)	0.2082(1)	0.0484 (3)
0.8375(1)	0.2543 (2)	0.1722(1)	0.0402 (2)
0.7003(1)	0.0327(1)	0.0826(1)	0.0395 (2)
0.8460(1)	0.2703 (2)	-0.0043(1)	0.0498 (3)
0.8721 (1)	0.5331 (2)	0.3568(1)	0.0757 (5)
0.4742 (2)	0.0467 (3)	0.1844 (2)	0.0979 (7)
0.8983 (1)	0.5236(2)	0.1506(1)	0.0703 (4)
0.5479(1)	-0.0337 (2)	-0.0010(1)	0.0652 (4)
0.8506 (2)	0.5026 (3)	-0.0828(1)	0.0947 (7)
0.6449(1)	0.2596 (2)	0.3766(1)	0.0458 (3)
0.7026(1)	0.3298 (2)	0.3031(1)	0.0393 (3)
0.6536(1)	0.2506 (2)	0.2232(1)	0.0383 (3)
0.7216(1)	0.3028 (2)	0.1500(1)	0.0350 (3)
0.6780(1)	0.2143 (2)	0.0710(1)	0.0356 (3)
0.7238(1)	0.2823 (2)	-0.0072(1)	0.0459 (3)
0.7901 (2)	0.6005 (3)	0.3260(1)	0.0504 (4)
0.7732 (2)	0.7894 (3)	0.3131 (2)	0.0726 (6)
0.4555 (2)	0.1973 (4)	0.1915(1)	0.0658 (6)
0.3432 (2)	0.2841 (6)	0.1832 (2)	0.089(1)
0.9182(1)	0.3787 (3)	0.1722(1)	0.0479 (4)
1.0314 (2)	0.3100 (4)	0.2022 (2)	0.0717 (6)
0.6241 (1)	-0.0769 (2)	0.0465(1)	0.0461 (4)
0.6486 (2)	-0.2570 (3)	0.0733 (2)	0.0786 (8)
0.9003 (2)	0.3903 (3)	-0.0461 (1)	0.0507 (4)
1.0256 (2)	0.3660(3)	-0.0397 (2)	0.0679 (6)
0.6379(1)	0.3786 (2)	0.4360(1)	0.0514 (3)
0.2942 (1)	0.2816 (3)	0.4740(1)	0.0684 (4)
0.4123 (2)	0.3462 (4)	0.3769(1)	0.0889 (6)
0.5949 (2)	0.3263 (3)	0.5106(1)	0.0505 (4)
0.4843 (2)	0.2969 (3)	0.5155(1)	0.0577 (5)
0.3976 (2)	0.3131 (3)	0.4471 (1)	0.0602 (5)
0.6824 (2)	0.3181 (3)	0.5793 (1)	0.0552 (4)
0.6540 (2)	0.3381 (4)	0.6593 (1)	0.0766 (7)
0.7359 (3)	0.3235 (5)	0.7238 (2)	0.0929 (9)
0.8467 (2)	0.2917 (5)	0.7087(2)	0.0916 (9)
0.8765 (2)	0.2735 (6)	0.6295 (2)	0.098 (1)
0.7954 (2)	0.2900 (5)	0.5645 (2)	0.0788 (7)
0.2002 (2)	0.2894 (5)	0.4120(1)	0.0800 (8)
0.0934 (2)	0.2823 (8)	0.4558 (2)	0.111(1)

		KOPF, ABELN	I, KÖLL
Table 2. Selec	cted geome	etric parameters (Å	., °)
01-01	1.194 (2)	C5-C6	1.511 (2)
$0^{2}-C^{2}$	$\pm 353(2)$	$C_{21} = C_{22}$	1.493 (3)
0^{2} - 0^{2}	1425 (2)	$C_{31} = C_{32}$	1 482 (4)
03 C31	1.423 (2)	$C_{41} - C_{42}$	1 488 (3)
03 C3	1.303(2)	$C_{1} = C_{12}$	1.487 (3)
04 - C41	1.451 (2)	C61-C62	1.487(3)
04 64	1.334 (2)	$C_{01} = C_{02}$	1.407(2)
05 C51	1 343 (2)	Old = Cla	1.343(2)
05 C5	1.343(2)	Old = Cld	1 449 (3)
05-061	1.444(2)	$O_{a} = C_{a}$	1,195 (3)
06 66	1.341(2)	C_{a}	1.195(3)
	1.190 (2)	Cla = Clb	1.330(3)
021 - 021	1.100(3)	Cla = Cla	1.471(3)
041 641	1.197(3)	$C_{2a} = C_{3a}$	1.400(3)
()41 - (41)	1.197(3)	C1b = C2b	1.375(3)
051-051	1.194(2)	C10 - C00	1.303(3)
	1.109(3)	C20C30	1.363(4)
	1.343(2)	C_{30} C_{40} C_{40}	1.307(4)
$C_1 = C_2$	1.517(2)	C4b = -C.10	1.307(4) 1.383(4)
$C_2 = C_3$	1.518(2)	C_{30}	1.385(4) 1.487(4)
C4—C5	1.518 (2)	Cn-C2	1.407 (4)
C21—O2—C2	116.26(13)	O4]C4]O4	123.1 (2)
C31-O3-C3	117.8 (2)	O41-C41-C42	125.9 (2)
C41C4	117.84(13)	04C41C42	110.9 (2)
C51O5C5	116.78 (12)	O51-C51-O5	123.8 (2)
C61	116.52(14)	O51C51C52	125.3 (2)
O1 - C1 - O1a	125.0 (2)	O5-C51-C52	110.87 (14)
01-C1-C2	122.9 (2)	O61C61O6	122.0 (2)
O1a— $C1$ — $C2$	111.88 (15)	O61C61C62	125.6(2)
O2-C2-C1	112.81 (13)	O6-C61-C62	112.4 (2)
O2-C2-C3	109.37 (13)	C1	117.72 (15)
C1-C2C3	111.53 (13)	C3a—O1c—C1c	115.6 (2)
O3-C3-C2	107.67 (12)	C2aC1aO1a	120.7 (2)
03-C3C4	107.85 (12)	C2aC1aC1b	125.9 (2)
C2-C3-C4	111.78(12)	Ola—Cla—Clb	113.3 (2)
04C4C5	110.93 (11)	Cla—C2a—C3a	125.2 (2)
O4C4C3	105.73 (11)	03aC3aO1c	122.9 (2)
C5C4C3	111.98 (12)	O3a—C3a—C2a	127.4 (2)
O5C5C6	112.28 (12)	O1cC3aC2a	109.7 (2)
O5-C5C4	106.40 (12)	C2bC1bC6b	118.6 (2)
C6C4	115.88 (13)	C2b— $C1b$ — $C1a$	120.9 (2)
O6-C6-C5	111.16(12)	C6b—C1b—C1a	120.5 (2)
O21-C21-O2	123.3 (2)	C1bC2bC3b	120.6 (2)
021C21-C22	126.3 (2)	C4bC3bC2b	120.3 (2)
O2—C21C22	110.4 (2)	C5bC4bC3b	119.7 (2)
O31C31O3	122.3 (2)	C4b C5bC6b	120.3 (2)
031-C31-C32	127.2(2)	C1bC65C5b	120.3 (2)
03-C31C32	110.5 (3)	O1cC1cC2c	107.2 (2)

Data collection and cell refinement: Enraf-Nonius CAD-4 software. Data reduction: *CADSHEL* (Kopf, 1987). Program(s) used to solve structure: *SHELXS*90 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL* (Sheldrick, 1994). Molecular graphics: *SCHAKAL*88 (Keller, 1986). Software used to prepare material for publication: *CIF2TEX* (Kopf, 1992*a*); *FCF2FOC* (Kopf, 1992*b*).

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1135). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Galan, E. R., Hodgson, D. J., Yokomori, Y., Eliel, E. L., Martinez, M. B. & Blazquez, J. A. S. (1988). *Carbohydr. Res.* 180, 263–276. Flack, H. D. (1983). Acta Cryst. A**39**, 876-881. Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A**44**, 499-506.

- Keller, E. (1986). Chem. Unserer Zeit, **20**, 178–181.
- Kopf, J. (1987). CADSHEL. Program for Data Reduction of Enraf-Nonius CAD-4 Data. Univ. of Hamburg, Germany.
- Kopf, J. (1992a). CIF2TEX. Program for Automatic Preparation of Deposition Data. Univ. of Hamburg, Germany.
- Kopf, J. (1992b). FCF2FOC. Program for Printing F_c^2 and F_o^2 . Univ. of Hamburg, Germany.
- Kopf, J., Topf, C., Morf, M., Zimmer, B. & Köll, P. (1991). Acta Cryst. C47, 2425-2428.
- Kopf, J., Morf, M., Zimmer, B., Bischoff, M. & Köll, P. (1992). Carbohydr. Res. 229, 17–32.
- Köll, P., Morf, M., Zimmer, B., Kopf, J., Berger, A., Dax, K. & Stütz, A. E. (1993). Carbohydr. Res. 242, 21–28.
- Meisel, R. (1991). Diploma thesis, Univ. of Rostock, Germany.
- Park, Y. J., Park, M. H. & Shin, J. M. (1990). Daehan Hwahak Hwoejee, 34, 517–526 (in Korean); Chem. Abstr. (1991). 114, 82345a.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). J. Appl. Cryst. In preparation.

Acta Cryst. (1994). C50, 1337-1339

Spiro[3-germabicyclo[3.1.0]hexane-3,9'-[9]germafluorene]

KEIICHIRO OGAWA AND YOSHITO TAKEUCHI

Department of Chemistry,

The College of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan

GEORGES MANUEL AND RABAH BOUKHERROUB

Laboratoire des Organometalliques, Université Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX, France

(Received 20 January 1994; accepted 15 March 1994)

Abstract

The 3-germabicyclo[3.1.0]hexane moiety in the title compound, $C_{17}H_{16}Ge$, adopts a boat form even though the ring bears bulky substituents. This stresses the difference in the structures of germa-*versus* carbocycles.

Comment

The preference for the boat conformation of the bicyclo[3.1.0]hexane (BCH) ring system, shown in Fig. 1, has been well documented (Mastryukov, Osina, Vikov & Hildebrandt, 1977; Kisiel & Legon, 1978). It was shown that the origin of this rather unexpected conformation is the enhanced eclipsing effect in the chair form, which